
DOI 10.1007/s10898-005-1655-0
Journal of Global Optimization (2006) 34: 293–316 © Springer 2006

Optimization of Algorithmic Parameters using a
Meta-Control Approach�

WOLF KOHN, ZELDA B. ZABINSKY, and VLADIMIR BRAYMAN
Clearsight Systems Inc., University of Washington, Industrial Engineering, Bellevue, WA,
98006, USA (E-mail: wolf.kohn@clearsightsystems.com)

(Received 18 August 2004; accepted in revised form 27 July 2005)

Abstract. Optimization algorithms usually rely on the setting of parameters, such as barrier
coefficients. We have developed a generic meta-control procedure to optimize the behavior
of given iterative optimization algorithms. In this procedure, an optimal continuous control
problem is defined to compute the parameters of an iterative algorithm as control variables
to achieve a desired behavior of the algorithm (e.g., convergence time, memory resources,
and quality of solution). The procedure is illustrated with an interior point algorithm to
control barrier coefficients for constrained nonlinear optimization. Three numerical examples
are included to demonstrate the enhanced performance of this method.

Key words: Algorithms, Interior-point, Nonlinear Optimization, Optimal Control

1. Optimization Problem

Optimization algorithms often include parameters that affect the overall
performance of the algorithm. For example, interior point methods rely
on barrier parameters. While it is shown that the algorithm will converge
to optimality as the barrier parameters converge to zero, the specific val-
ues of the parameters are chosen empirically [6, 7]. We have developed an
approach that can choose barrier values that not only guarantees conver-
gence, but does so as fast as possible. Moreover, our approach is very gen-
eral. In this paper, we present a control theoretic approach that allows us
to analytically prescribe the parameter values of a generic algorithm that
optimizes the performance of the algorithm. A very general measure of
performance is used in our methodology, and some examples include the
rate of convergence, memory usage, and quality of solution. We use the
example of barrier parameters in an interior point algorithm with a New-
ton type descent direction to illustrate how to construct an optimal control
problem that optimizes the performance of the algorithm by controlling
the values of the parameters. Three numerical examples demonstrate the
trajectories of the barrier parameters as determined by our meta-control
approach.

� This work was primarily done when Z. Zabinsky was visiting Clearsight Systems Inc.

294 W. KOHN ET AL.

Our approach is to create an optimal control problem which is based
on the original problem to be optimized as well as the algorithmic cri-
terion. This optimal control formulation leads to a system of first order
differential equations that constitute the necessary conditions for optimal-
ity. The solution to this system of differential equations provides not only
the optimal solution to the original problem, but also the parameter val-
ues that optimize the performance of the algorithm. While it is difficult to
directly solve this system of differential equations, because it is a two-point
boundary value problem, we construct an associated variational problem
with a solution that coincides with the optimal control problem. We con-
struct the Lagrangian for this variational problem from the system of first
order differential equations using the inverse Lagrangian technique. Finally,
the variational problem is easily solved using direct methods.

We begin by formulating a standard (static) optimization problem, with
N decision variables, M1 inequality constraints and M2 equality con-
straints. The original problem (P1) is

minimize C̃(x)

subject to g̃i(x)�0 fori =0, ...,M1 −1
h̃j (x)=0 forj =0, ...,M2 −1

(P1)

where x = (x0, x1, ..., xN−1)
T ∈ RN is the vector of decision variables. We

assume the objective function C̃(x) and all of the constraints g̃i(x) and
h̃j (x) are at least once continuously differentiable.

An iterative optimization algorithm for solving problem (P1) can be
generically expressed as the following iteration,

x̃k+1 = x̃k + f̃(x̃k, ũk) (1)

for k = 0,1, . . . , where the function f̃ specifies the algorithm and maps
RN ×U to RN , with parameters ũk ∈U , the set of feasible parameter val-
ues for the optimization algorithm [3]. We assume an initial point x̃0 is
given. We also assume that the iterative equation (1) specified by f̃ con-
verges, i.e., limk→∞ x̃k = x̄.

Given the specifics of the optimization algorithm with f̃ (x̃k, ũk), we wish
to control the parameters ũk to achieve a desired behavior. One example
of such behavior is to have the optimization algorithm converge as fast as
possible. An example of the function f̃ (x̃k, ũk) used later in the paper is a
Newton type descent search with barrier parameters ũk. Typically the bar-
rier parameters ũk are chosen empirically in practice, but we give a formal
procedure for determining ũk to achieve good performance of the algo-
rithm. For linear and convex programs, theoretical conditions on a single
barrier parameter for convergence have been developed (see [18, 19, 20,

OPTIMIZATION OF ALGORITHMIC PARAMETERS 295

24]). Our procedure computes a sequence of barrier vectors, ũk, where k

is the iteration index, as a control policy that improves performance of
the underlying algorithm. This is demonstrated later with three numerical
examples.

The strategy we use is to develop a meta-control procedure based on
a continualization of the iteration [13]. In the continualization procedure,
we convert iterations of the form (1) to a controlled differential equation
in terms of x (τ) and u (τ). The variable τ � 0, is a continuous conver-
gence parameter corresponding to the discrete convergence parameter k.
The differential equation is of the form,

dx(τ)

dτ
=f(x(τ), u(τ)) (2)

for all u (τ)∈U , where U ⊆RM is the set of feasible parameter values for
the optimization algorithm. Later, in section 2, we introduce û (τ, h (τ))=
u (τ) to emphasize that our computational approach includes two related
convergence parameters (τ and h (τ)) for u.

We define f in (2) to reflect the iteration characterized by f̃ , by rewrit-
ing the iteration (1) as

x̃k+1 = x̃k +�kf (x̃k, ũk) (3)

with �k >0, the limk→∞ �k =0,
∑∞

k=0 �k =∞, and f(x̃k, ũk)= f̃(x̃k, ũk) /�k.
We assume the function f is Lipschitz continuous with Lipschitz constant
less than one (contraction mapping) [13]. Since the original algorithm spec-
ified by f̃ is assumed to converge, i.e., limk→∞ x̃k = x̄, the continualization
process ensures that the limit point of x (τ) equals the optimal solution in
the original domain, i.e., limτ→∞ x (τ)= limk→∞ x̃k. We formalize this with
the following theorem.

THEOREM 1. Let {x̃k} be a sequence in RN generated by x̃k+1 = x̃k +
f̃ (x̃k, ũk), for a sequence {ũk} , that converges, limk→∞ x̃k = x̄. Also, let
f (x̃k, ũk) be a contraction mapping from a subset of RN × U into RN ,
as above. Then there exists x (τ) satisfying dx(τ)

dτ
= f (x(τ), u(τ)) such that

limτ→∞ x (τ)= limk→∞ x̃k.

The proof can be found in [14, Theorem 2.3.1] and [15, Theorem 2.1].
The relationship between a discrete iterative procedure, as in (1), and

a continuous differential equation, as in (2), is also discussed briefly in
McCormick [14, pp. 143–147]. An analogy is made between minimizing a
function and rolling a boulder down the side of a mountain. The trajec-
tory of the boulder would approximately satisfy the differential equation in

296 W. KOHN ET AL.

terms of the gradient of the function. This analogy can be used to moti-
vate Cauchy’s method of steepest descent, as well as the classical version
of Newton’s method. While most nonlinear programming methods use the
discrete iterative approach, we concentrate on working with the differential
equation (2) directly.

The approximation of an iterative process with a differential equation
provides several key advantages, in addition to the determination of the
algorithm parameters u (τ):

1. We can formulate the numerical solution of (2) using higher order
integration methods [2],

2. We can use stability analysis tools developed for differential equa-
tions,

3. We can apply the techniques of differential geometry to solve the
differential equation,

4. We may take advantage of sophisticated computer algebra tools for
analysis and more efficient computation.

Numerical and symbolic methods for solving differential equations are
well-developed (see for example [21]), and are used in our meta-control com-
putational schema. We are now ready to define the optimal control problem.

2. Optimal Control of the Algorithm

The optimal control problem (P2) is formulated as follows,

min
u(τ)

τ∈[0,T)

∫ T

0
φ (x(τ), u(τ))dτ +�(x(T))

subject to dx(τ)

dτ
=f (x(τ), u(τ)) for τ ∈ [0, T)

u (τ)∈U ⊆RM for τ ∈ [0, T)

(P2)

with state vector x(τ) ∈ RN and x(0) given. The control vector is u (τ) ∈
U ⊆RM. The functions φ and � are chosen by the algorithm designer, in
order to achieve objectives such as minimizing convergence time, minimiz-
ing memory usage, or maximizing the quality of the solution (minimizing
solution error). In Section 4, an example is presented specifying φ and �

to minimize the time for convergence. The function f represents the algo-
rithm, as given in (2).

The optimal control problem (P2) can be solved by constructing and
solving the necessary conditions for optimality. These necessary conditions
for optimality are given by the minimum principle of Pontryagin [1]. The
necessary conditions utilize the Hamiltonian of the system (P2), which is
defined as

OPTIMIZATION OF ALGORITHMIC PARAMETERS 297

H(x(τ), u(τ),p(τ))=φ(x(τ), u(τ))+p(τ)Tf(x(τ), u(τ)),

where p(τ) is the costate associated with the problem [22]. In order for
the control u∗(τ) to be optimal with x∗(τ) a corresponding trajectory, there
must exist p(τ)∈RN such that the following necessary conditions are sat-
isfied:

dx∗(τ)

dτ
=

(
∂H (x∗(τ), u∗(τ),p∗(τ))

∂p

)

dp∗(τ)

dτ
=−

(
∂H (x∗(τ), u∗(τ),p∗(τ))

∂x

)T

p(T)= ∂� (x(T))

∂x
,

x∗ (0)=x0

u∗(τ)∈U(τ)

for τ ∈ [0, T), where the Hamiltonian function has an absolute minimum as
a function of u at u∗ (τ), that is

H(x∗(τ), u∗(τ),p∗(τ))�H(x∗(τ), u(τ),p∗(τ)), (4)

for all u (τ)∈U (τ) , τ ∈ [0, T).

In order to solve the necessary condition on u(τ) in (4), we define an
iterative procedure to minimize the Hamiltonian. We construct a conver-
gence sequence {ŭs(τ)} generated by

ŭs+1(τ)= ŭs(τ)+ W̆ (x(τ), ŭs(τ),p(τ)) (5)

such that

lim
s→∞ ŭs(τ)=u∗ (τ) , when x(τ)=x∗(τ), τ ∈ [0, T).

The algorithm defining the iterative step in (5) is specified by W̆ (x(τ), ŭs(τ),

p(τ)). An example of W̆ (x(τ), ŭs(τ),p(τ)) based on a Newton step is dis-
cussed in section 4, and equation (28).

The key observation is: for each τ ∈ [0, T), (5) looks like (1) with ŭs(τ)

analogous to x̃k and W̆ analogous to f̃ . We again apply the continualiza-
tion procedure used to develop (2) from (1). Now we continualize (5) by
introducing σ as a continuous parametrization of s, analogous to τ param-
eterizing k. We interpret σ as a convergence parameter, and, in develop-
ing the meta-control approach, we assume that σ is functionally related to

298 W. KOHN ET AL.

τ , i.e., σ = h(τ), where h is a given continuous function. For example, if
σ = τ/10, then this indicates that the computation of ŭs+1 is embedded in
the computation of x(τ). In principle, we could introduce a new variable
û(τ, σ), which is a continualized version of ŭs(τ); however, σ is related to
τ (σ =h(τ)), so we can express the continualized variable as a function of
τ only, û(τ, h (τ))=u (τ).

The continuous version of (5) yields

du (τ)

dτ
=W(x(τ), u (τ) ,p(τ)) ,

where u (τ) = û (τ, h (τ)) is a continualized version of ŭs(τ) and W(x(τ),

u (τ),p(τ)) is a continualized version of W̆ (x(τ), ŭs(τ),p(τ)) [13]. As in
(3), we define W as follows,

W (x(τ), u (τ) ,p(τ))= 1
δs

W̆ (x(τ), ŭs(τ),p(τ))
dh (τ)

dτ

where δs is analogous to �k in (3) with similar assumptions. Since
lims→∞ ŭs(τ) = u∗ (τ), we conclude, by theorem 1, that limσ→∞ û (τ, σ) =
u∗ (τ).

We next summarize our approach. To solve the original optimization
problem (P1), we solve three coupled differential equations, τ ∈ [0, T),

dx(τ)

dτ
=f (x(τ), u(τ)) (6)

du (τ)

dτ
=W (x(τ), u (τ) ,p(τ)) (7)

dp(τ)

dτ
=−

(
∂H (x(τ), u(τ),p(τ))

∂x

)T

(8)

with boundary conditions

x(0)=x0, u(0)=u0,

p(T)= ∂� (x(T))

∂x
(9)

given. Under mild smoothness assumptions [11], the solution to this set
of equations, x (τ) evaluated at τ =T , i.e., x (T) , closely approximates the
original optimal solution x̄.

3. Inverse Lagrangian

In this section we discuss a solution approach to solving the system of
differential equations in (6)–(8). The primary difficulty in solving this

OPTIMIZATION OF ALGORITHMIC PARAMETERS 299

system is that we have a two-point boundary value problem with initial
conditions for equations (6) and (7) given at τ =0, and the terminal condi-
tion for equation (8) given at τ =T . It is well known that this is a difficult
problem to solve [2]. Our solution approach is to convert this two-point
boundary value problem into a variational problem such that the solution
to the variational problem coincides with the solution to the original sys-
tem (6)–(8). Typically, the solution to a variational problem is obtained by
solving a differential equation called the Euler–Lagrange equation [10]. We
use the inverse Lagrangian approach [5], where we start with a differential
equation, and derive a variational problem.

More precisely, we want to formulate a variational problem (P3) of the
form

min
z(τ)

τ∈[0,T)

∫ T

0
L

(

z(τ),
dz(τ)

dτ
, τ

)

dτ (P3)

with a Lagrangian L
(
z(τ), dz(τ)

dτ
, τ

)
that is twice continuously differentiable

in the first two of its arguments. The solution to this problem is given by
solving suitably constructed Euler–Lagrange equations [10]

dLv (z(τ), v(τ), τ)

dτ
−Lz (z(τ), v(τ), τ)=0, (10)

where Lz is the derivative of L with respect to its first argument, and Lv is
the derivative of L with respect to its second argument. Notice that equa-
tion (10) is a second order equation in terms of z(τ) because, by defini-
tion, v(τ)= dz(τ)

dτ
. Expanding the derivative in equation (10) and rearrang-

ing terms yields,

d2z (τ)

dτ 2
=L−1

vv (z(τ), v(τ), τ)

(

Lz (z(τ), v(τ), τ)−Lvz (z(τ), v(τ), τ)
dz(τ)

dτ

)

,

(11)

where, by construction, the Hessian Lvv is positive definite, and hence
invertible.

We now construct the appropriate Euler–Lagrange equation from the
original system (6)–(8) and find a corresponding Lagrangian. We start by
defining z as a vector-valued function, z: [0, T)→R2N+M as follows

300 W. KOHN ET AL.

z(τ)=
⎡

⎣
x(τ)

u(τ)

p(τ)

⎤

⎦ , τ ∈ [0, T). (12)

In order to bring the original system of equations (6)–(8) into the form
of equation (11), we take a derivative with respect to τ on both sides of
(6)–(8) to get,

d2z (τ)

dτ 2
=	

(

z(τ),
dz (τ)

dτ
, τ

)

, (13)

where the vector function 	
(
z(τ), dz(τ)

dτ
, τ

)
is

	

(

z(τ),
dz (τ)

dτ
, τ

)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

fx (x(τ), u(τ))
dx(τ)

dτ
+fu (x(τ), u(τ))

du(τ)

dτ

Wx (x(τ), u (τ) ,p(τ))
dx(τ)

dτ
+Wu (x(τ), u (τ) ,p(τ))

du(τ)

dτ

+Wp (x(τ), u (τ) ,p(τ))
dp(τ)

dτ

− ∂2H(x(τ),u(τ),p(τ))

∂x2
dx(τ)

dτ
− ∂2H(x(τ),u(τ),p(τ))

∂x∂u

du(τ)

dτ

− ∂2H(x(τ),u(τ),p(τ))

∂x∂p

dp(τ)

dτ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(14)

with boundary conditions

z(0)=
⎡

⎣
IN×N 0 0 0
0 IM×M 0 0
0 0 0N×N 0

⎤

⎦

⎡

⎣
x0

u0

p(0)

⎤

⎦ (15)

z(T)=
⎡

⎣
0N×N 0 0 0
0 0M×M 0 0
0 0 IN×N 0

⎤

⎦

⎡

⎣
x(T)

u(T)
∂�(x(T))

∂x

⎤

⎦ . (16)

We assume the following smoothness for f, W and H. We assume, for
all τ , that f is twice jointly differentiable with respect to x and u, and
W is twice jointly differentiable with respect to x, u, and p. Moreover, we
assume H is jointly continuously differentiable three times with respect to
x, u, and p. These assumptions imply that 	 is twice jointly differentiable
with respect to its first two arguments.

In the following proposition, we define L
(
z(τ), dz(τ)

dτ
, τ

)
, a Lagrangian

that is twice continuously differentiable in its first two arguments. The
Euler–Lagrange equations associated with L

(
z(τ), dz(τ)

dτ
, τ

)
are (13)–(16).

If the Lagrangian defined in the proposition is used in the variational
problem (P3), then the solution to the variational problem gives a solution
to (13) with boundary conditions (15), (16).

OPTIMIZATION OF ALGORITHMIC PARAMETERS 301

PROPOSITION 2. Consider the variational problem (P3) with the Lagrang-
ian L

(
z(τ), dz(τ)

dτ
, τ

)
and associated Euler–Lagrange equation (13). Then

the Hessian of the Lagrangian given by Lvivk

(
z(τ), dz(τ)

dτ
, τ

)
=
ik, for

i, k =1, . . . ,2N +M, satisfies

2
d
ik

dτ
+

2N+M∑

j=1

(
ij (j)vk
+
kj (j)vi

)=0 (17)

along the trajectories generated by (13)–(16), with vi = dzi(τ)

dτ
and

(
	j

)
vk

denoting the partial derivative of 	j with respect to vk.

Proof. We derive a smooth Lagrangian L
(
z(τ), dz(τ)

dτ
, τ

)
using 	

(
z(τ),

dz(τ)

dτ
, τ

)
as defined in equation (13). First we rewrite equation (13) by

introducing a new variable v (τ) as follows,

dzi(τ)

dτ
= vi(τ)

dvi(τ)

dτ
= 	i (z(τ), v(τ), τ)

(18)

for i = 1, . . . ,2N + M. Our approach to find L
(
z(τ), dz(τ)

dτ
, τ

)
consists of

finding an expression for its Hessian,
{
Lvivk

, i, k =1, . . . ,2N +M}
in terms

of the given functions {	i (z(τ), v(τ), τ) , i =1, . . . ,2N +M} and some of
their derivatives. Then we construct a particular Lagrangian from this Hes-
sian using a simple quadrature.

Expanding (10) we obtain,

2N+M∑

j=1

{

Lvizj
(z(τ), v(τ), τ)vj (τ)+Lvivj

(z(τ), v(τ), τ)
dvj (τ)

dτ

}

+Lviτ (z(τ), v(τ), τ)−Lzi
(z(τ), v(τ), τ)=0

for i = 1, . . . ,2N + M with vj (τ) and dvj (τ)

dτ
given by the corresponding

expressions in (18).
For the purposes of simplifying expressions, we drop the arguments(

z(τ), dz(τ)

dτ
, τ

)
in the expressions. Then substituting 	j for dvj (τ)

dτ
, we

obtain,

2N+M∑

j=1

{Lvizj
vj +Lvivj

	j }+Lviτ −Lzi
=0

302 W. KOHN ET AL.

for i = 1, . . . ,2N + M. Differentiating both sides of these equations with
respect to vk, k = 1, . . . ,2N + M, and using

(
	j

)
vk

to denote the partial
derivative of 	j with respect to vk, we obtain,

2N+M∑

j=1

Lvizj vk
vj+Lvizk

+
2N+M∑

j=1

{Lvivj vk
	j +Lvivj

(
	j

)
vk

}+Lviτvk
−Lzivk

=0

(19)

for i, k =1, . . . ,2N +M. By exchanging i with k in (19), we can write the
symmetric expression:

2N+M∑

j=1

Lvkzj vi
vj+Lvkzi

+
2N+M∑

j=1

{Lvkvj vi
	j +Lvkvj

(j)vi
}+Lvkτvi

−Lzkvi
=0

(20)

for i, k = 1, . . . ,2N +M. Adding (19) and (20) term by term and using a
smoothness condition on L, we can eliminate terms that do not involve Lvv

in some manner, and obtain the following set of symmetric equations:

2N+M∑

j=1

2Lvivkzj
vj +

2N+M∑

j=1

2Lvivkvj
	j +

2N+M∑

j=1

Lvivj
(j)vk

+
2N+M∑

j=1

Lvkvj

(
	j

)
vi

+2Lvivkτ =0 (21)

for i, k =1, . . . ,2N +M. Define the functions
ij , i, j =1, . . . ,2N +M as
follows:

ij =Lvivj
(z (τ) , v (τ) , τ), i, j =1, . . . ,2N +M. (22)

From (22) in (21) we obtain the following set of coupled partial differential
equations,

2

⎡

⎣
2N+M∑

j=1

{(
ik)zj
vj + (
ik)vj

	j }+ (
ik)τ

⎤

⎦

+
2N+M∑

j=1

{
ij (j)vk
+

kj
(j)vi

}=0 (23)

OPTIMIZATION OF ALGORITHMIC PARAMETERS 303

for i, k = 1, . . . ,2N + M, along a given trajectory segment z(τ), v(τ), τ ∈
I, I a finite interval of R, satisfying (18). The total derivative d
ik

dτ
is given

by

d
ik

dτ
= (
ik)τ +

2N+M∑

j=1

{(
ik)zj
vj + (
ik)vj

	j } (24)

for i, k = 1, . . . ,2N + M. Thus, along the given trajectory, using (24) to
substitute into (23) we obtain

2
d
ik

dτ
+

2N+M∑

j=1

{
ij (j)vk
+
kj (j)vi

}=0

for i, k =1, . . . ,2N +M, along a trajectory generated by

dvl(τ)

dτ
=	l(z(τ), v(τ)), and

dzl(τ)

dτ
=vl(τ),

for l =1, . . . ,2N +M.
The proposition provides us with a mechanism to solve the original

differential equations in (6)–(8) by constructing a variational problem of
the form (P3). The original system is converted into a system of second
order differential equations (13), where 	 is determined in equation (14).
By proposition 2, we then solve equation (17) for
ik. To complete the
process, we use
ik to construct the Lagrangian. The following corollary
provides an expression for a specific type of Lagrangian in terms of
ik.
Finally, we solve the variational problem (P3) with the Lagrangian given
in (25) using direct methods [4, 12].

COROLLARY 3. Given
ik, for i, k = 1, . . . ,2N + M, we can construct a
square of a Finsler Lagrangian of the form,

L(z (τ) , v (τ) , τ)=
2N+M∑

i=1

2N+M∑

k=1

vi
ikvk (25)

where vi = dzi(τ)

dτ
.

The proof of the corollary is an algebraic exercise, based on Euler’s the-
orem for homogeneous Lagrangians (see [12]).

304 W. KOHN ET AL.

4. Application of Meta-Control to Barrier Parameters with an Interior
Point Method

Consider solving the original problem (P1) using barrier functions as a
basis for interior point methods [7]. The first step is to reformulate the con-
strained problem in (P1) as an unconstrained problem with the use of bar-
rier functions. It can be shown [6] that (P1) can be approximated by an
unconstrained problem using a barrier function b and barrier coefficients
µi as,

minimize
ξ,x,s

F (ξ, x, s,µ) (ExP1)

where F(ξ, x, s,µ) = ξ + ∑M1+3M2
i=0 µib (gi (ξ, x, s)) , ξ is an upper bound

on the objective C̃(x), the constraint functions gi(ξ, x, s) are,

gi(ξ, x, s)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

g̃i (x) i =0, . . . ,M1 −1
h̃i−M1 (x)− si−M1 i =M1, . . . ,M1 +M2 −1
si−M1−M2 − h̃i−M1−M2 (x) i =M1 +M2, . . . ,M1 +2M2 −1
si−M1−2M2 i =M1 +2M2, . . . ,M1 +3M2 −1

ξ − C̃(x)−
M2−1∑

j=0

rj sj i =M1 +3M2

and x = (x0, x1, ..., xN−1)
T ∈ RN , s = (s0, s1, ..., sM2−1)

T ∈ RM2 . Notice the
first M1 equations of gi(ξ, x, s) are the original M1 inequality constraints.
The next set of 2M2 equations convert the original M2 equality con-
straints into “greater than” and “less than” inequalities and then include
additional slack/surplus variables. The following set of M2 equations allow
for non-negativity of the slack/surplus variables, and the final equation is
the original objective function with a penalty for the slack/surplus vari-
ables. We also modify the notation, letting ỹ = (ξ, xT, sT)T, so that the
unconstrained problem, for given µ, can be written simply as,

minimize
ỹ

F (ỹ,µ).

An ideal barrier function would take on an infinite value for infeasible
points, and a value of zero inside the feasible region defined by the con-
straints of (P1). This is typically implemented with an extended logarithmic
barrier function [6], which grows very large as it approaches zero from the
right. Hence the choice of this barrier function forces feasibility by driving
the constraints to be greater than zero.

An interior point algorithm minimizes F(ỹ,µ(k)) for a sequence of pos-
itive barrier parameters {µ(k)}, such that limk→∞ µ(k) = 0 [7]. Usually the
choice of the barrier parameters in practice is ad hoc, although some

OPTIMIZATION OF ALGORITHMIC PARAMETERS 305

theoretical conditions are known. Our meta-control procedure determines
an optimal sequence {µ(k)} of barrier parameters to minimize convergence
time. We also allow a barrier parameter associated with each constraint,
whereas in practice it is common to have only one barrier parameter. As
illustrated in our numerical examples, having several barrier parameters
allows the procedure to steer the descent field of the underlying algorithm
more accurately.

To continue the example of our meta-control procedure, we identify con-
trol variables ũk in (P2) with the barrier parameters µ(k). We also specify
the algorithm to solve (ExP1) to be a Newton descent method. This pro-
vides the function f̃ (ỹk, ũk), and we get an iteration of the form (1),

ỹk+1 = ỹk + f̃ (ỹk, ũk)

where

f̃ (ỹk, ũk)= − (
Fỹỹ

)−1 (
Fỹ

)T
∣
∣
∣
ỹk ,ũk

and Fỹ is the vector of first partial derivatives of F with respect to ỹ, Fỹỹ

is the Hessian, ũk are the barrier parameters, and ỹk = (ξk, x
T
k , sT

k)T, for each
iteration k. To continualize the problem, we introduce y(τ), a continuous
version of ỹk and u(τ), a continuous version of ũk. Notice the dimension
of y(τ) is the same as ỹ, which is n=N +M2 +1. The dimension of u(τ)

equals the dimension of ũ equals m=M1 +3M2 +1. The differential equa-
tion satisfied by y(τ), as in (2), is given by

dy(τ)

dτ
=f (y(τ), u(τ))

where f (y(τ), u(τ))=−(Fyy)
−1(Fy)

T|y(τ),u(τ) represents a descent field equa-
tion [8]. We assume f (y(τ), u(τ)) is twice jointly differentiable with respect
to y and u.

We select the minimum convergence horizon as the criterion for the opti-
mal control of the algorithm. To provide the criterion for (P2), we would
like to set � (x(T)) = T to minimize time, however the optimal control
problem assumes T is given. To minimize convergence time, we reparam-
eterize the problem and create an auxiliary convergence time t with a fixed
interval, t ∈ [0,1]. We also introduce a new state variable to represent the
“clock”, yn+1(t)=τ , where n=N +M2 +1, and a new control variable rep-
resenting the “clock rate”, um+1(t)= dyn+1(t)

dt
, where m=M1 +3M2 +1. The

dynamics become,

306 W. KOHN ET AL.

dy(t)

dt
=f (y(t), u(t))um+1(t)

dyn+1(t)

dt
=um+1(t)

for t ∈ [0,1). Now we define the criterion for the optimal control problem.
First, we set

� =yn+1(1)+ 1
2
((Fy)|y(1),u(1) Q (Fy)

T|y(1),u(1))

to minimize the convergence time and drive the gradient Fy to zero, where
Q is a positive definite matrix. We also set

φ = 1
2(u(t)TRu(t)+ ru2

m+1(t))

for some positive definite matrix R and scalar r > 0, to force the control
parameters to zero in order to satisfy limk→∞ µ(k) =0. The numerical values
for Q, R and r must be set empirically. Extensive numerical experience (see
[16]) suggests the following formulas for the Q and R matrices and scalar r,

Qij =
∣
∣
∣
∣

αij

umaxi
umaxj

∣
∣
∣
∣ for 1<αij <2, and i, j =1, ..., n

Rij =
∣
∣
∣
∣

βij

umaxi
umaxj

∣
∣
∣
∣ for 1<βij <2, and i, j =1, ...,m

r =
∣
∣
∣
∣

βm+1

umaxm+1umaxm+1

∣
∣
∣
∣ for 1<βm+1 <2

and umax can be estimated with any upper bound.
Our example of the optimal control problem (P2) becomes,

min
u(t),um+1(t)

t∈[0,1)

1∫

0

1
2

[
uT(t) um+1(t)

]
[

R 0
0 r

][
u(t)

um+1(t)

]

dt

+yn+1(1)+ 1
2((Fy)|y(1),u(1) Q (Fy)

T|y(1),u(1))

(ExP2)

subject to dy(t)

dt
=f (y(t), u(t))um+1(t) for t ∈ [0,1)

dyn+1(t)

dt
=um+1(t) for t ∈ [0,1)

OPTIMIZATION OF ALGORITHMIC PARAMETERS 307

with initial conditions y(0) = y0, and yn+1(0) = 0 given. The Hamiltonian
associated with problem (ExP2) is

H (y(t), yn+1(t), u(t), um+1(t), p(t),pn+1(t))

= 1
2

[
uT(t) um+1(t)

]
[

R 0
0 r

][
u(t)

um+1(t)

]

+ [
pT(t) pn+1(t)

]
[

f (y(t), u(t))um+1(t)

um+1(t)

]

.

Now we present the differential equations for our example, as in (6)–(8).
For t ∈ [0,1), the expressions for (6) are,

dy(t)

dt
=f (y(t), u(t))um+1(t) (26)

dyn+1(t)

dt
=um+1(t) (27)

with boundary conditions y (0)=y0 and yn+1 (0)=0.
We now construct du(t)

dt
= W from (7) for our example. As in section 2,

the problem of minimizing the Hamiltonian with respect to u, as in the
necessary condition (4), is similar to the problem of minimizing F with
respect to y. Therefore the corresponding descent field for finding optimal
trajectories for the continualized barrier parameters is given by

d

dt

[
u(t)

um+1(t)

]

=W(y(t), yn+1(t), u(t), um+1(t), p(t),pn+1(t))

= −

[Huu Huum+1

HT
uum+1

Hum+1um+1

]−1 [HT
u

Hum+1

]

[Hu Hum+1

]
[Huu Huum+1

HT
uum+1

Hum+1um+1

]−1 [HT
u

Hum+1

]

∣
∣
∣
∣
∣
∣
∣
∣
∣y(t),yn+1(t),
u(t),um+1(t),
p(t),pn+1(t)

(28)

with boundary conditions u (0)=u0 and um+1 (0)=u0
m+1.

Finally, we provide the expressions for (8) for our example,

dp(t)

dt
=−um+1(t)

(
∂f (y(t), u(t))

∂y

)T

p(t) (29)

dpn+1(t)

dt
=0 (30)

308 W. KOHN ET AL.

with boundary conditions

p(1)= (
Fyy

)∣
∣
y(1),u(1)

Q
(
Fy

)T
∣
∣
∣
y(1),u(1)

(31)

pn+1(1)=1 (32)

given. Notice that the derivative of pn+1 is identically zero, which implies
that pn+1 is a constant equal to one on the interval [0, 1]. This is a conse-
quence of pn+1 being the costate of the “clock”. Equations (26)–(32) con-
stitute the necessary conditions for optimality of problem (ExP2).

In order to solve this system of differential equations, we could use
the inverse Lagrangian method described in Section 3, or another inte-
gration procedure that solves multiple boundary value problems. Follow-
ing the inverse Lagrangian procedure in Section 3, we first introduce a
vector-valued function z : [0,1)→R2(n+1)+(m+1) as follows

z(t)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

y(t)

yn+1(t)

u(t)

um+1(t)

p(t)

pn+1(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, t ∈ [0,1).

Then, we substitute z into the system of differential equations (26)–(32)
and take the derivative with respect to t , as in equation (13). The result-
ing vector function 	 for our example is,

	

(

z(t),
dz (t)

dt
, t

)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

um+1(t)
(
fy (y(t), u(t))

dy(t)

dt
+fu (y(t), u(t))

du(t)

dt

)

+f (y(t), u(t))
dum+1(t)

dt
dum+1(t)

dt

Wy
dy(t)

dt
+Wyn+1

dyn+1(t)

dt
+Wu

du(t)

dt
+Wum+1

dum+1(t)

dt

+Wp
dp(t)

dt
+Wpn+1

dpn+1(t)

dt

−um+1(t)
(
fyy (y(t), u(t))

dy(t)

dt
+fyu (y(t), u(t))

du(t)

dt

)T
p(t)

−um+1(t)f
T
y (y(t), u(t))

dp(t)

dt
−f T

y (y(t), u(t))p(t)
dum+1(t)

dt

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Knowing 	
(
z(t), dz(t)

dt
, t

)
allows us to determine
ik, for i, k = 1, . . . ,2

(n+1)+ (m+1), as in proposition 2, and then determine the Lagrangian

L(z (t) , v (t) , t)=
2(n+1)+(m+1)∑

i=1

2(n+1)+(m+1)∑

k=1

vi
ikvk

OPTIMIZATION OF ALGORITHMIC PARAMETERS 309

using corollary 3. This gives us a variational problem for (P3),

min
z(t)

t∈[0,1)

∫ 1

0
L

(

z(t),
dz(t)

dt
, t

)

dt (ExP3)

which can be solved using direct methods. Direct methods include the Ritz
method, the method of finite differences [10], and more recently finite ele-
ment methods [4] and the chattering approximation method [9]. The solu-
tion to the variational problem (ExP3), z(1), provides the optimal solution
to the original problem (ExP1). Thus, the first entry of z(1), ξ , provides
an approximation (upper bound) of the optimal objective function value,
the next N entries of z(1) are the optimal values for the original variables
x, and the following M2 entries of z(1) are the slack/surplus variables for
the equality constraints which should be very close to zero. The rest of the
values of z(1) are algorithmic parameters, including the values of the bar-
rier parameters. This example demonstrates our meta-control approach that
simultaneously optimizes the original problem and barrier parameter val-
ues.

5. Numerical Examples

We now present numerical results on three examples to illustrate our meta-
control approach of using barrier functions with an interior point method,
as described in Section 4. The first example is the well-known Rosenbrock
banana function, the second example is a nonconvex quadratic program
suggested in [25], and the third example is a mixed binary program moti-
vated by a supply chain distribution application.

The first example problem is a two variable unconstrained nonlinear pro-
gramming problem, often referred to as the banana function [23]. The
problem is

minimize f (x1, x2)=100(x2 −x2
1)

2 + (1−x1)
2

and the known optimal solution is (x1, x2)
∗ = (1,1) with f ∗ = 0. We used

an initial starting position of (−1.2,1), as suggested in [23]. We solved the
problem in 7.7 CPU seconds on a PC using Matlab code. Figure 1 illus-
trates the convergence of (x1, x2) to (1,1) and Figure 2 illustrates the tra-
jectory of the barrier parameter u determined during the run. The initial
value, u0 = 1, is not shown in the figure, so the changes in the trajectory
can be better viewed. We also attempted to solve the problem using our
code and forcing the barrier parameter trajectory to be as suggested by
Monteiro and Adler [18, 19], but the algorithm failed to converge and was
terminated after 360 CPU seconds on the same computer.

310 W. KOHN ET AL.

Convergence of (x1,x2) for Banana Function

-1.5

-1

-0.5

0

0.5

1

1.5

0 20 40 60 80 100

Iterations

x
va

lu
es x1

 x2

Figure 1. Trajectories of the state values in the descent procedure applied to the banana func-
tion.

Trajectory of Barrier Parameter (u) for Banana
Function

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 20 40 60 80 100

Iterations

u
 v

al
u

e

Figure 2. Trajectory of the barrier parameter for the banana function.

The second example problem is a constrained nonconvex quadratic pro-
gram in two variables, given as

minimize f (x1, x2)=− 1
4x2

1 − 1
4x2

2 +x1x2

subject to 0�x1 �10 0�x2 �10

with the initial point taken as (0.1,0.1). The optimal solution is (x1, x2)
∗ =

(0,10), or (x1, x2)
∗ = (10,0). Tseng and Ye [25] point out that a standard

OPTIMIZATION OF ALGORITHMIC PARAMETERS 311

Convergence of x1 for Nonconvex Quadratic
Problem

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120 140

Iterations

x
1

va
lu

e

 Convergence of x2 for Nonconvex Quadratic
Problem

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140

Iterations

x
2

va
lu

e
Convergence of x1 for Nonconvex Quadratic

Problem

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120 140

Iterations

x
1

va
lu

e

 Convergence of x2 for Nonconvex Quadratic
Problem

0

2

4

6

8

10

12

0 20 40 60 80 100 120 140

Iterations

x
2

va
lu

e

Figure 3. Trajectories of the state values in the descent procedure applied to the nonconvex qua-
dratic problem.

interior point path-following algorithm converges to (0,0), not the optimal
solution. We solved the problem in 4.125 CPU seconds, and graphs of the
convergence of (x1, x2) to (0,10) are given in Figure 3. Also the trajectories
for the two barrier parameters used in the meta-control approach (u1 asso-
ciated with the objective function and u2 associated with the constraints)
are given in Figure 4. We also used our code with the barrier parame-
ter reduction strategy suggested by Monteiro and Adler [18], and the algo-
rithm did converge to the correct solution, but took much longer, 69.952
CPU seconds. Figure 5 shows the convergence of (x1, x2) to (0,10) using
this barrier parameter trajectory, and Figure 6 shows the actual trajectories.
By comparing the barrier trajectories (Figures 4 and 6), we can observe
the difference between our meta-control strategy and a uniformly decreas-
ing strategy. The conclusion is that the nonuniform strategy computed by

312 W. KOHN ET AL.

Trajectories of Barrier Parameters (u1,u2) for
Nonconvex Quadratic Function

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120 140

Iterations

u
 v

al
u

es u1

u2

Figure 4. Trajectories of both barrier parameters used in the nonconvex quadratic problem.

Convergence of (x1,x2) using Monteiro-Adler for
Nonconvex Quadratic Problem

0

2

4

6

8

10

12

0 1000 2000 3000 4000

Iterations

x
va

lu
es x1

 x2

Figure 5. Trajectories of the state values in the descent procedure with monteiro-adler values
applied to the nonconvex quadratic problem.

the meta-control approach provides faster convergence than the uniform
strategy in this case.

The third example problem is a mixed binary program which comes
from a supply chain/distribution application, and involves minimizing
transportation costs as well as facility costs. Three binary variables are

OPTIMIZATION OF ALGORITHMIC PARAMETERS 313

Trajectories for Monteiro-Adler Barrier Parameters
(u1,u2) for Nonconvex Quadratic Function

0

2

4

6

8

10

12

0 1000 2000 3000 4000

Iterations

u
 v

al
u

es u1

u2

Figure 6. Trajectories of both barrier parameters with monteiro-adler values used in the non-
convex quadratic problem.

introduced to determine which of three possible warehouses should be
selected.

The mixed binary program used in this numerical example has two
plants (p = 2), three warehouses (n = 3), and five customers (c = 5). We
allow a maximum number of three sites to be selected (w = 3). The deci-
sion variables include the 25 continuous variables x

pw

ij and xwc
jk for the flow

from plant to potential warehouse, and from potential warehouse to cus-
tomer, for i = 1, ..., p, j = 1, ..., n, and k = 1, ..., c, as well as three binary
variables yj to indicate whether a potential warehouse site is selected. The
mixed binary formulation is

minimize
p∑

i=1

n∑

j=1

c
pw

ij x
pw

ij +
n∑

j=1

c∑

k=1

cwc
jk xwc

jk +
n∑

j=1

rjyj

subject to

(supply)
n∑

j=1

x
pw

ij � si for i =1, ..., p

(demand)
n∑

j=1

xwc
jk �dk for k =1, ..., c

(capacity)
p∑

i=1

x
pw

ij �vj for j =1, ..., n

314 W. KOHN ET AL.

(capacity)
c∑

k=1

xwc
jk �vj for j =1, ..., n

(capacity)
c∑

k=1

xwc
jk �vj for j =1, ..., n

(conservation)
p∑

i=1

x
pw

ij −
c∑

k=1

xwc
jk =0 for j =1, ..., n

(flow)xpw

ij

(
1−yj

)=0 ∀i, j

(flow)xwc
jk

(
1−yj

)=0 ∀j, k

(max sites)
n∑

j=1

yj �w

(non-negative)xpw

ij , xwc
jk �0 ∀i, j, k

(binary)yj ∈{0,1} for j =1, ..., n

where the coeffiecients c
pw

ij and cwc
jk represent transportation costs, rj is

rental cost at warehouse j, si is supply at plant i, dk is demand at cus-
tomer k, vj is capacity at warehouse j . The binary constraint yj ∈{0,1} is
explicitly implemented by replacing yj with a continuous variable ỹj ∈ [0,1]
which satisfies ỹj

(
1− ỹj

)=0 for j =1, ..., n.
We use the following values for cost, supply, capacity, demand and rental

coefficients.

Plant 1 Plant 2 Warehouse 1 Warehouse 2 Warehouse 3 Customers

c
pw

11 9 c
pw

21 2 cwc
11 4 cwc

21 2 cwc
31 7 d1 200

c
pw

12 10 c
pw

22 5 cwc
12 9 cwc

22 10 cwc
32 2 d2 700

c
pw

13 3 c
pw

23 7 cwc
13 9 cwc

23 7 cwc
33 1 d3 550

cwc
14 4 cwc

24 3 cwc
34 3 d4 500

cwc
15 4 cwc

25 5 cwc
35 4 d5 500

s1 1550 s2 2050 v1 1500 v2 3000 v3 4000
r1 8 r2 10 r3 9

We ran our meta-control approach on this problem and converged to
the optimal solution, shown in the table below. Although we presented
a numerical problem of a relatively small mixed integer program, our
approach is also suitable for nonlinear mixed integer programs.

OPTIMIZATION OF ALGORITHMIC PARAMETERS 315

Warehouse 1 Warehouse 2 Warehouse 3

Plant 1 0 0 1550
Plant 2 900 0 0
yes/no 1 0 1

Customer 1 200 0 0
Customer 2 0 0 700
Customer 3 0 0 550
Customer 4 200 0 300
Customer 5 500 0 0
Total cost: 12,917

6. Conclusion

In this paper, we present an approach to solve an optimization prob-
lem while controlling the algorithm simultaneously. We use optimal control
theory in order to compute control parameters that steer the algorithm to
provide best performance. We first formulate an optimal control problem,
and construct a set of differential equations from the necessary conditions
of optimality. We then use the inverse Lagrangian method to construct a
corresponding variational problem, which can be solved with direct meth-
ods. The solutions to the variational problem provide both the optimal
algorithmic parameters as well as the best path to the optimal solution
of the original problem. We demonstrate our approach using an exam-
ple to control a Newton-like iteration for solving a constrained nonlinear
optimization problem using an interior point method. We measure perfor-
mance of the algorithm in terms of convergence time, and the algorithmic
parameters are the barrier coefficients. Numerical results on three example
problems are presented to illustrate our meta-control approach.

References

1. Athans, M. and Falb, P.L. (1966), Optimal Control, McGraw-Hill Book Company, New
York.

2. Butcher, J.C. (2003), Numerical Methods for Ordinary Differential Equations, John Wiley,
Hoboken, New Jersey, second edition.

3. Dennis, J.E. and Schnabel, R.B. (1996), Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia.

4. Eriksson, K., Estep, D., Hansbo, P. and Johnson, C. (1996), Computational Differential
Equations, Cambridge University Press, Lund, Sweden.

5. Evans, L. C. (1998), Partial Differential Equations, American Mathematical Society,
Providence, Rhode Island.

316 W. KOHN ET AL.

6. Fiacco, A.V. and McCormick, G.P. (1990), Nonlinear Programming, Society for Indus-
trial and Applied Mathematics (SIAM), Philadelphia.

7. Forsgren, A., Gill, P.E. and M.H. Wright. (2002), Interior methods for nonlinear opti-
mization, SIAM Review, 44(4):525–597.

8. Frankel, T. (1997), The Geometry of Physics, Cambridge University Press, New York.
9. Ge, X., Kohn, W., Nerode, A. and Remmel, J.B. (1996), Hybrid systems: chattering

approximations to relaxed controls. In: Alur, R., Henzinger, T.A. and Sontag, E.D.
(eds.), Hybrid Systems III, number 1066 in Lecture Notes in Computer Science, Springer,
New York, p. 76.

10. Gelfand, I.M. and Fomin, S.V. (1963), Calculus of variations, Prentice-Hall, Inc., Engle-
wood Cliffs, N.J.

11. Kohn, W. and Brayman, V. (2003), Convergence analysis of the hynomics incremental
optimizer, Technical report, Hynomics Corporation.

12. Kohn, W., Brayman, V., Cholewinski, P. and Nerode, A. (2004), Control in hybrid sys-
tems, International Journal of Hybrid Systems.

13. Kohn, W., Nerode, A. and Remmel, J.B. (1996), Continualization: A hybrid systems con-
trol technique for computing, Proceedings of CESA’96 IMACS Multiconference, 517–
521.

14. Kushner, H.J. and Clark, D.S. (1978), Stochastic Approximation Methods for Constrained
and Unconstrained Systems, Springer-Verlag, New York.

15. Kushner, H.J. and Yin, G.G. (1997), Stochastic Approximation Algorithms and Applica-
tions, Springer-Verlag, New York.

16. Kwakernaak, H. and Sivan, R. (1972), Linear Optimal Control Systems, John Wiley and
Sons, New York.

17. McCormick, G.P. (1983), Nonlinear Programming: Theory, Algorithms, and Applications,
John Wiley and Sons, New York.

18. Monteiro, R.D.C. and Adler, I. (1989), Interior path following primal-dual algorithms.
Part I: Linear programming, Mathematical Programming, 44, 27–41.

19. Monteiro, R.D.C. and Adler, I. (1989), Interior path following primal-dual algorithms.
Part II: Convex quadratic programming, Mathematical Programming, 44, 43–66.

20. Nesterov, Y. and Nemirovskii (1994), Interior-point polynomial algorithms in convex pro-
gramming, Society for Industrial and Applied Mathematics, Philadelphia.

21. Olver, P.J. (1993), Applications of Lie Groups to Differential Equations, Springer-Verlag,
second edition.

22. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V. and Mischenko, E.F. (1962), The
Mathematical Theory of Optimal Processes, Interscience, New York.

23. Schittkowski, K. (1987), More Test Examples for Nonlinear Programming Codes,
Springer-Verlag, Berlin, Heidelberg.

24. Sherali, H.D., Skarpness, B., O. and Kim, B. (1988), An assumption-free convergence
analysis for a perturbation of the scaling algorithm for linear programs, with applica-
tion to the L1 estimation problem, Naval Research Logistics, 35, 473–492.

25. Tseng, P. and Ye, Y. (2002), On some interior-point algorithms for nonconvex quadratic
optimization, Mathematical Programming 93, 217–225.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

